

Ponentes: Guillaume Meura y Gonzalo Parra

VIDEO CAMPEONATO

NORMATIVA DE REFERENCIA FIA:

ANEXO J – Art 251: CLASIFICACIONES Y DEFINICIONES

ARTICULO 3. Definiciones específicas a los vehículos a propulsión eléctrica

ANEXO J – Art 253: ELEMENTOS DE SEGURIDAD PARA VEHÍCULOS GRUPOS N, A, R-GT

ARTICULO 18. Exigencias específicas a los vehículos a propulsión eléctrica

REGLAMENTO TÉCNICO PARA KARTS ELÉCTRICOS

ARTICULO 3. Seguridad del Kart y del equipamiento

ARTICULO 4. Reglamento específico para el equipamiento eléctrico (referencias al Anexo J - A 253)

VOLTAJE CLASE B (según A-J-251):

Estamos en Voltaje Clase B, si el Voltaje Máximo de Trabajo está entre:

Corriente alterna: entre 30 y 1.000 Vac

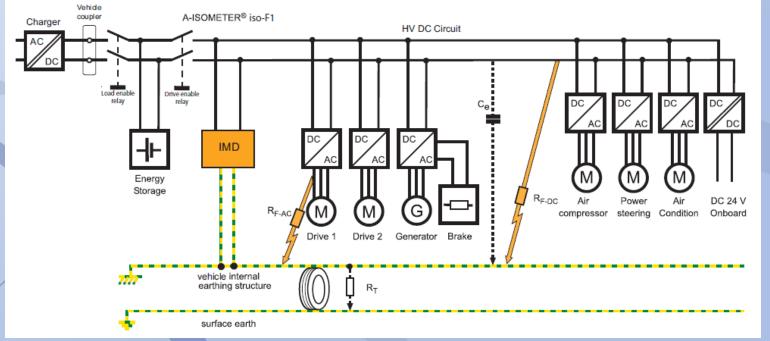
Corriente Continua: entre 60 y 1.500 Vdc

Por lo tanto cualquier componente que use esa tensión formará parte del SISTEMA DE ALTA TENSIÓN (HV SYSTEM):

Todo aquel componente (cable, conector, etc) que no esté en el interior de una envolvente, debe estar marcado de color NARANJA

EXPLICACIÓN SISTEMA HV EN KART Y DESCRIPCIÓN DE LOS COMPONENTES

Comisarios Técnicos


SISTEMA HV y LV

ALTO VOLTAJE (HV)

- **Conductores HV**
- Motor
- Inverter o Controlador
- **Convertidor DC/DC**
- Batería

BAJO VOLTAJE (LV)

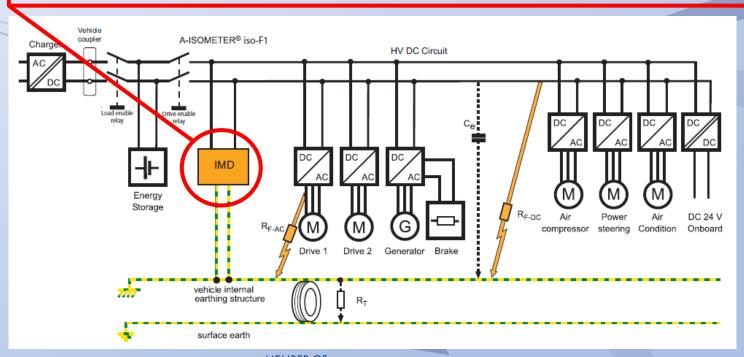
- **Conductores LV**
- **Batería 12V**
- Sistemas eléctricos auxiliares
- Chasis vehículo (incluidas las carcasas de los componentes de HV que están conectadas a chasis)

Comisarios Técnicos

RIESGOS

La reglamentación tiene la principal función de protegernos contra los nuevos riesgos, que son

	CHOQUE ELÉCTRICO	CORTOCIRCUITO SISTEMA HV	
	A DANGER Electric shock risk		
RIESGOS	Riesgo contacto directo o indirecto de pilotos, mecánicos, comisarios. El riesgo de contacto indirecto está provocado por un FALLO DE AISLAMIENTO	Riesgo de destrucción de componentes En último extremo: riesgo de incendio	
MEDIDAS	Colocación de un VIGILANTE DE AISLAMIENTO	Fusibles de ALTO VOLTAJE	



Comisarios Técnicos

EL VIGILANTE DE AISLAMIENTO (IMD)

FUNCIONES

- Mide constantemente el aislamiento entre el sistema HV y el chasis (LV)
- Reporta el valor de aislamiento vía CAN BUS a un datalogger
- Actúa directa o indirectamente sobre los contactores de línea y/o de baterías o bien cortando totalmente la potencia y por lo tanto deteniendo el vehículo.
- Avisa del error encendiendo un LED rojo

CAUSAS DEL FALLO DE AISLAMIENTO (EJEMPLOS):

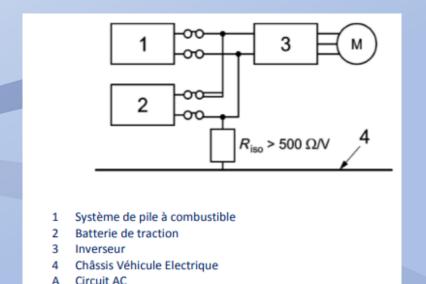
- Inverter: sobrecalentamiento electrónica de potencia
- Placas electrónicas BMS
- Infraestructura de recarga
- Fallo de estanqueidad
- Cableado HV en mal estado
- Contacto directo por avería o accidente

Comisarios Técnicos

EL TEST DE AISLAMIENTO

CUMPLIMIENTO DEL ART 18.9 DEL ANEXO J-253

TEST 1:


Comprobar que el aislamiento entre chasis y sistema HV es mayor que 500 ohm/Voltio.

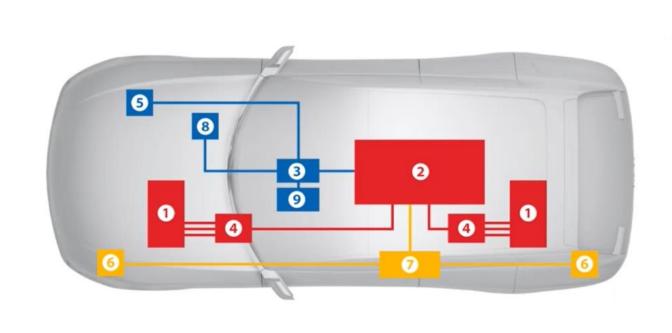
EJEMPLO KART (115V): 500x115 = 57 Kohm (La medida directa de resistencia debe ser > 57 Kohm)

TEST 2:

Provocando una falla de aislamiento, comprobar que el VIGILANTE DE AISLAMIENTO realiza su función:

 Detecta el error encendiendo el LED rojo y limita la potencia

PRUEBA PRÁCTICA: TEST DE AISLAMIENTO EN KART



COMPONENTES PRINCIPALES DE UN VE

Powertrain

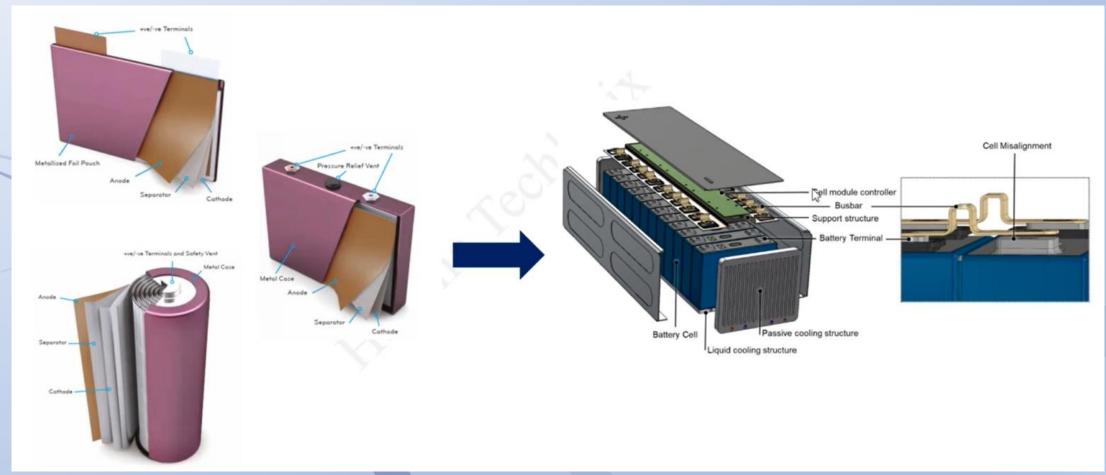
- Electric motor
- 2 HV battery
- Power electronics

Aggregate & On-Board Network

- 3 HV distributor
- 6 Compressor
- 8 PTC heater
- OC/DC converter

Charging Infrastructure

- Quickcharge unit
- On-board charger

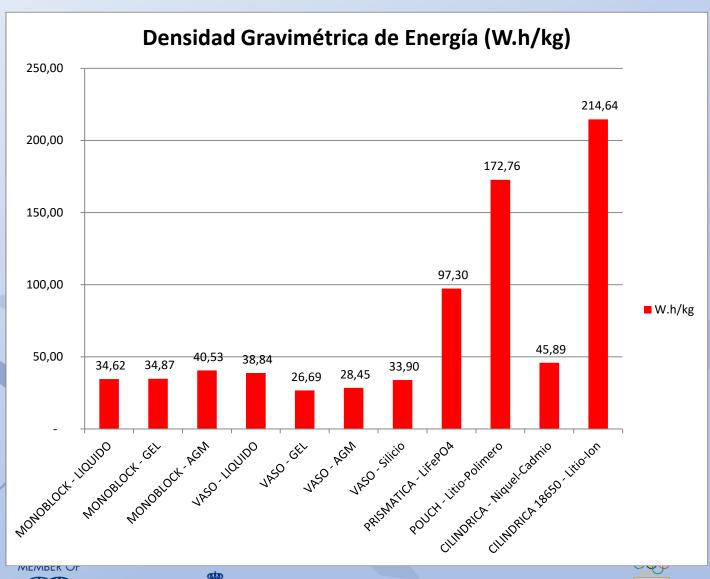


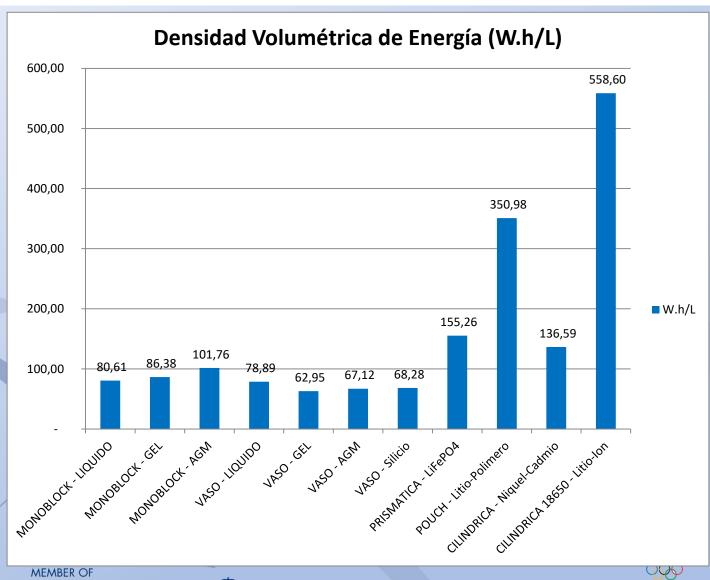
Comisarios Técnicos

TIPOS DE CELDAS – PACK DE BATERÍAS

Comisarios Técnicos

DEL MÓDULO AL PACK





SÓLO DOS FÓRMULAS!!!!!

POTENCIA ELÉCTRICA:

 $P = I \times V$

Potencia (W) = VOLTAJE (Voltios) x INTENSIDAD (Amperios)

LEY DE OHM:

 $V = I \times R$

Voltaje, Tensión, Caída de Tensión (V) = INTENSIDAD (Amperios) x RESISTENCIA (Ohmios)

Con estas dos simples fórmulas se resuelve el 90% de las decisiones de diseño, problemas técnicos, estimaciones, ...

UNIDADES

VOLTIOS, WATIOS, AMPERIOS... Y LO NUEVO: KILOWATIOS.HORA

El Kilowatio.Hora, kW.h (no kilowatio/hora, ni kW/h) es la unidad ENERGÉTICA, es decir expresa:

- Energía almacenada en un pack de baterías.
- Energía entregada por un pack de baterías.
- Energía cargada desde la red hacia un vehículo.

NO CONFUNDIR CON POTENCIA, WATIOS, KILOWATIOS, CABALLOS

Comisarios Técnicos

EJEMPLOS CALCULO INTENSIDAD

KART DE COMPETICIÓN (Modo "Race")-Inicio Carrera

Objetivo: 21 kW

Voltaje al inicio: 96 Voltios

Intensidad = P/V=21.000W/96V= 218 Amp

KART DE COMPETICIÓN (Modo "Race")-Final Carrera

Objetivo: 21 kW

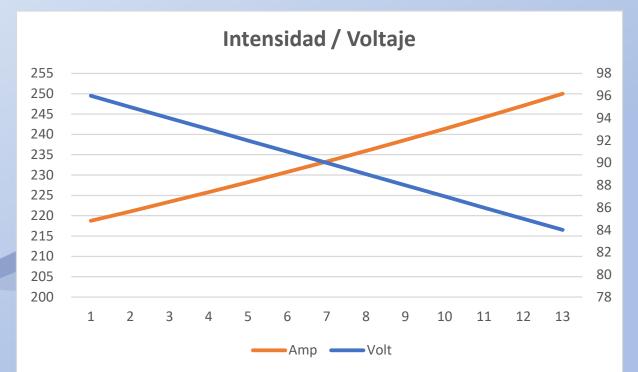
Voltaje al final: 84 Voltios

Intensidad = P/V=21.000W/84V= 250 Amp

KART DE COMPETICIÓN (Modo "Qualy")-Inicio Carrera

Objetivo: 30 kW

Voltaje al inicio: 96 Voltios


Intensidad = P/V=30.000W/96V= **312** Amp

KART DE COMPETICIÓN (Modo "Qualy")-Final Carrera

Objetivo: 30 kW

Voltaje al inicio: 84 **Voltios**

Intensidad = P/V=30.000W/84V= 357 Amp

Comisarios Técnicos

EJEMPLOS CÁLCULO CAÍDA DE TENSIÓN

KART DE COMPETICIÓN (Modo "Race")-Inicio Carrera

Capacidad energética: 5 kW.h

Voltaje al inicio: 96 Voltios

Intensidad: 218 Amp

Resistencia total del pack: 58 mohm

Caída de tensión: I.R=218Ax0,058=12,6V

KART DE COMPETICIÓN (Modo "Race")-Final Carrera

Capacidad energética: 5 kW.h

Voltaje al final: 84 Voltios

Intensidad: 250 Amp

Resistencia total del pack: 58 mohm

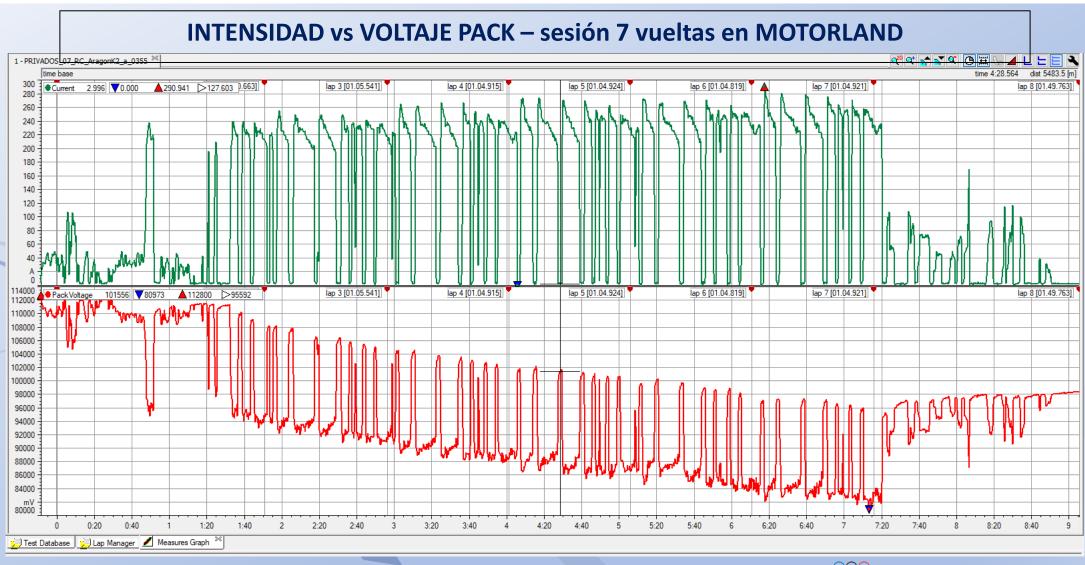
Caída de tensión: I.R=250Ax0,058=14,5V

CAUSAS DE LA CAÍDA DE TENSIÓN:

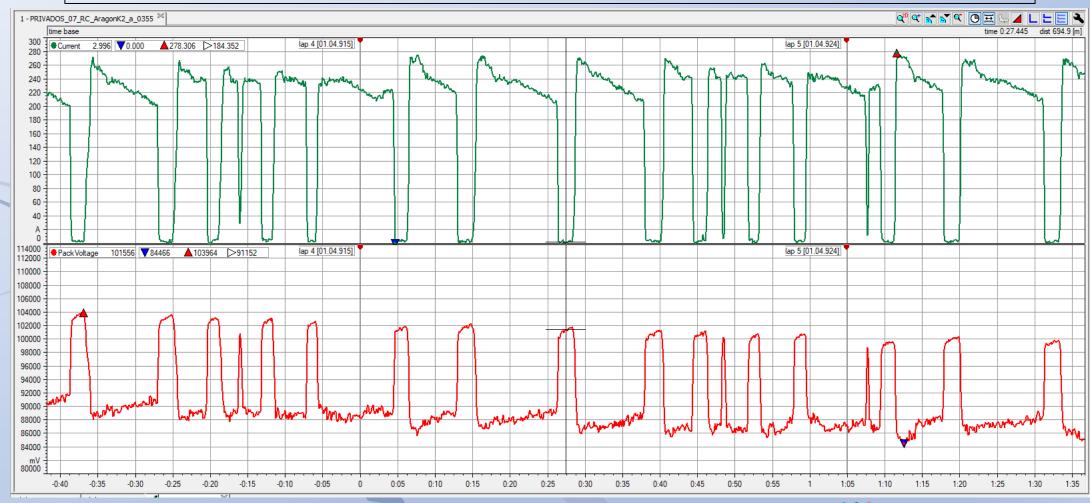
La causa principal es la RESISTENCIA INTERNA DE LAS CELDAS.

Por lo general, las celdas con más capacidad (A.h) tienen más resistencia interna y viceversa.

Para competición trabajaremos con celdas de baja resistencia interna.

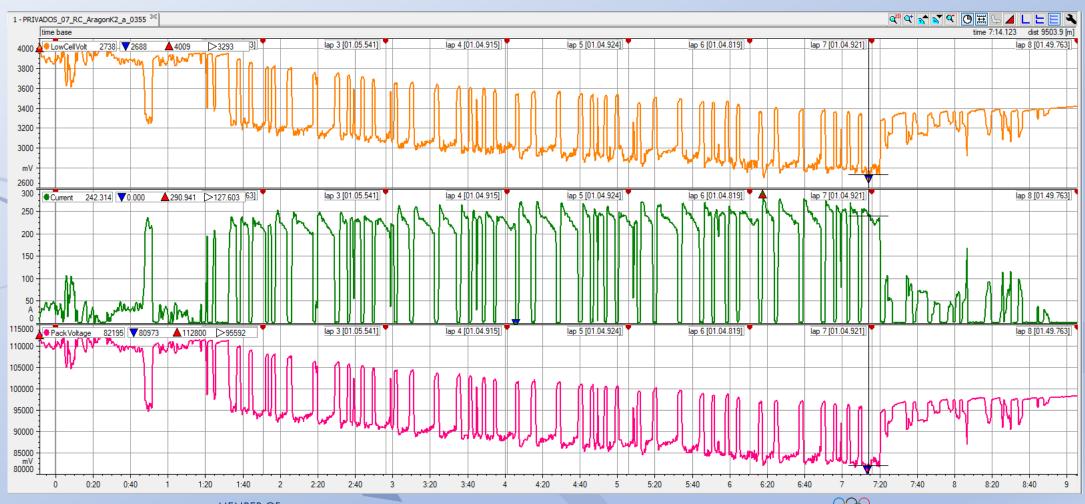


Comisarios Técnicos



Comisarios Técnicos

INTENSIDAD vs VOLTAJE PACK – sesión 7 vueltas en MOTORLAND



Comisarios Técnicos

INTENSIDAD vs VOLTAJE CELDA – sesión 7 vueltas en MOTORLAND

PRUEBA PRÁCTICA: TEST CAÍDA DE TENSIÓN EN KART

RATIO DE DESCARGA INSTANTANEO (C) =

RATIO DE DESCARGA

CAPACIDAD ENERGÉTICA (KW.H)

Relación entre la POTENCIA y la CAPACIDAD ENERGÉTICA de la batería

INTENSIDAD (A)

CAPACIDAD (A.H)

Relación entre la INTENSIDAD y la CAPACIDAD de la batería

Comisarios Técnicos

EJEMPLOS RATIO DE DESCARGA

KART DE COMPETICIÓN (Modo "Race")-Inicio Carrera

Intensidad: 218 A

Capacidad: 50,16 A.h

Ratio = 218/50,16: 4,16 C

KART DE COMPETICIÓN (Modo "Race")-Final Carrera

Intensidad: 250 A

Capacidad: 50,16 A.h

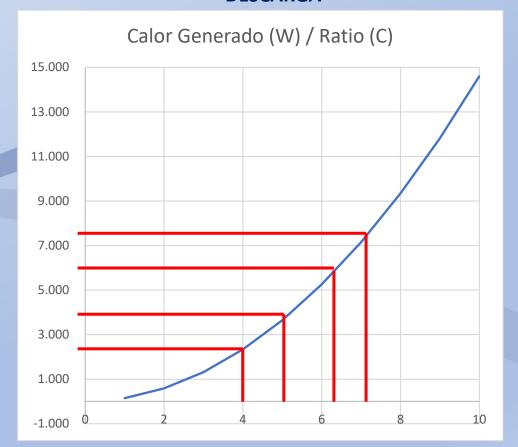
Ratio = 250/50,16: 5 C

KART DE COMPETICIÓN (Modo "Qualy")-Inicio Carrera

Intensidad: 312 A

Capacidad: 50,16 A.h

Ratio = 312/50,16: 6,22 C


KART DE COMPETICIÓN (Modo "Qualy")-Final Carrera

Intensidad: 357 A

Capacidad: 50,16 A.h

Ratio = 357/50,16: 7,11 C

CALOR GENERADO EN LA BATERÍA SEGÚN RATIO DE DESCARGA

IMPORTANCIA DEL RATIO DE DESCARGA

RATIO DE DESCARGA ALTO → ENERGÍA ÚTIL BAJA

RATIO 1: ~ 90 %

RATIO 5: ~ 70 %

RATIO 7: ~ 50 %

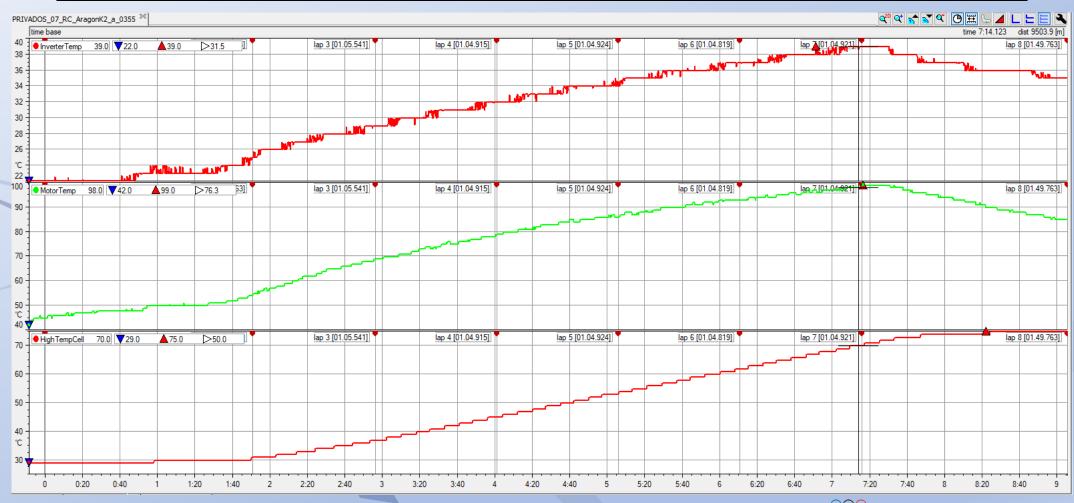
RATIO DE DESCARGA ALTO -> SOBRECALENTAMIENTO BATERÍAS

Además, la inversa del ratio de descarga nos indica el tiempo máximo teórico en pista:

RATIO 1 \rightarrow 1/1 \rightarrow 1 hora

RATIO 5 \rightarrow 1/5 \rightarrow 0,2 horas (12 minutos)

RATIO 7 \rightarrow 1/7 \rightarrow 0,14 horas (8 minutos)

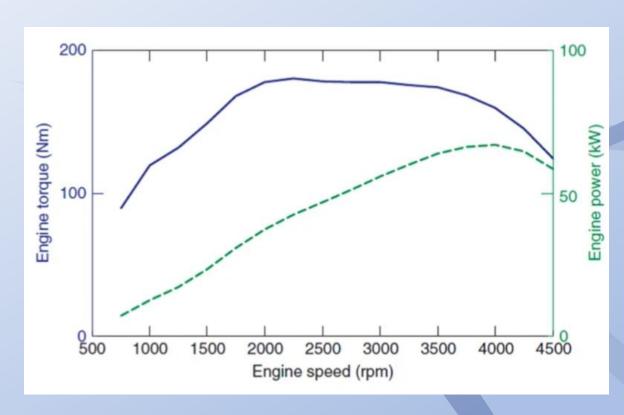


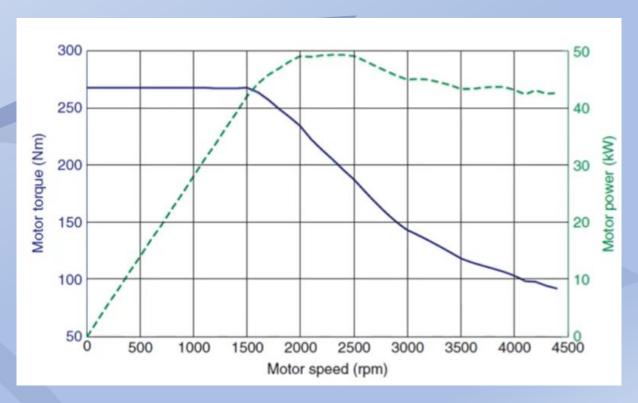
Comisarios Técnicos

TEMPERATURAS INVERTER/MOTOR/CELDAS – sesión 7 vueltas en MOTORLAND



ARQUITECTURA SISTEMA DE PROPULSIÓN

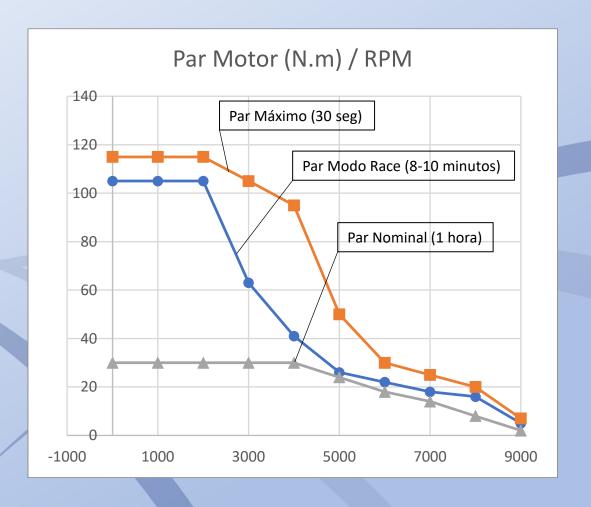




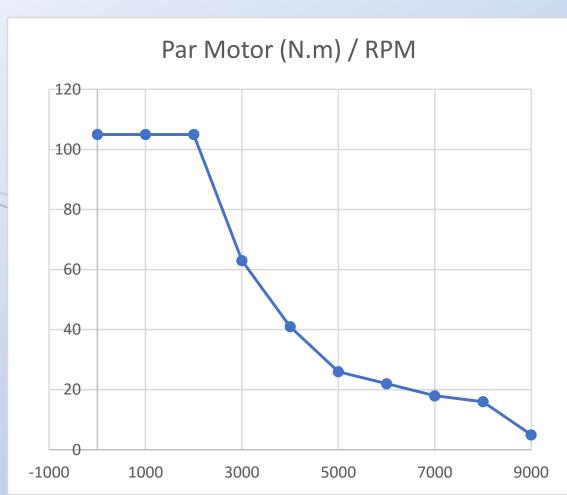
COMPARATIVA CURVAS MOTOR COMBUSTIÓN vs ELÉCTRICO

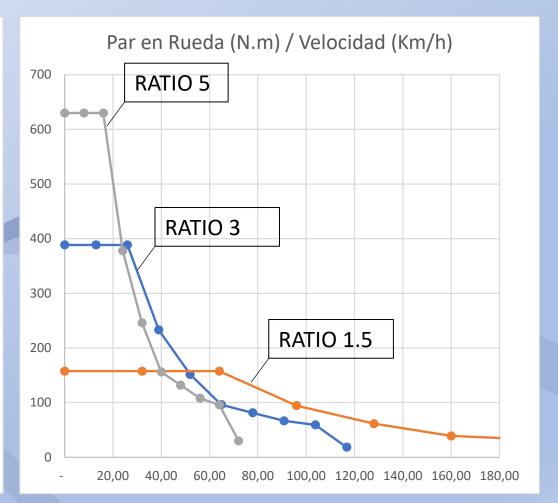
MOTOR DE COMBUSTIÓN

MOTOR ELÉCTRICO



SET-UP DE LA CURVA DE PAR





Comisarios Técnicos

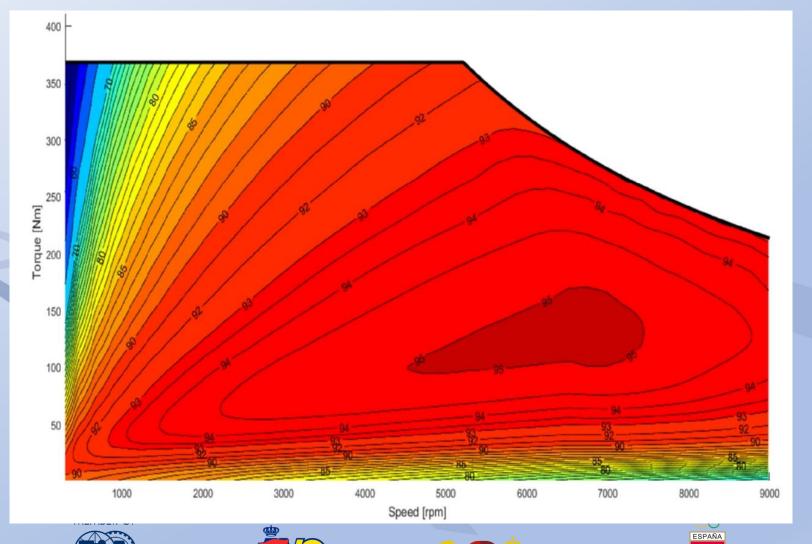
REDUCCIÓN APLICADA

Comisarios Técnicos

MOTOR ELÉCTRICO + CAMBIO DE MARCHAS (FORMULA 4 ELÉCTRICO)

VENTAJAS DEL CAMBIO DE MARCHAS:

- Mayor aceleración
- Mayor velocidad punta
- Trabajo en el tramo de mayor eficiencia del motor
- Posibilidad de trabajar con un motor de potencia adecuada, sin necesitar de sobredimensionar



MOTOR ELÉCTRICO – MAPA EFICIENCIA

VIDEO FORMULA

Comisarios Técnicos

LA IGUALDAD

FUNCIONAMIENTO Y CONTROL TÉCNICO DE LA PROPULSIÓN ELÉCTRICA LA RECARGA EN COMPETICIÓN

POSIBILIDADES DE RECARGA EN CIRCUITOS

CIRCUITOS DE KARTING

- Carga rápida (~ 45 minutos): 9 kW

- Número de karts: 12

Potencia de red necesaria: 100 kW

CIRCUITOS DE VELOCIDAD

- Carga rápida (~ 50 minutos): 50 KW – Toma de 63 Amp

Número de vehículos: 20

Potencia de red necesaria: 1000 kW

CIRCUITOS DE KARTING EN ESPAÑA

- 1 Circuito con > 400 kW
- La mayoría entre 50 y 100 KW potencia instalada
- Alguno sin potencia de red
- Infraestructura temporal fácil de realizar

CIRCUITOS DE VELOCIDAD EN ESPAÑA

- Algún circuito con toma de 63 Amperios en cada box y otros en proceso de instalación
- La mayoría al menos con toma de 32 Amperios
- La mayoría > 1000 kW de potencia disponible
- Infraestructura temporal costosa

FUNCIONAMIENTO Y CONTROL TÉCNICO DE LA PROPULSIÓN ELÉCTRICA HORARIO TIPO CAMPEONATO

Comisarios Técnicos

CLAVES PARA LA VIABILIDAD DEL CAMPEONATO

- Recarga rápida
- Programar márgenes en recarga
- Control de recarga: hay equipos que se olvidan de poner a cargar
- Control salida: hay pilotos que se confunden en la secuencia de encendido
- Colaboración estrecha entre:
 - Dirección de carrera
 - Comisarios técnicos
 - Comisarios deportivos

EJEMPLOS:

- Salidas en falso: no repetir salidas.
- Neutralización de carrera. Restar las vueltas ya realizadas o dar por finalizada la carrera

<u> </u>					
RACE DAY					
8:20	QL	RENTAL	All Drivers/Teams		
8:40	QL	TECHNOLOGY	All Drivers/Teams		
9:00	QL	SENIOR	All Drivers/Teams		
9:20	Race 1	RENTAL	All Drivers/Teams		
9:40	Race 1	TECHNOLOGY	All Drivers/Teams		
10:00	Race 1	SENIOR	All Drivers/Teams		
10:40	Race 2	RENTAL	All Drivers/Teams		
11:00	Race 2	TECHNOLOGY	All Drivers/Teams		
11:20	Race 2	SENIOR	All Drivers/Teams		
12:00	Race 3	RENTAL	All Drivers/Teams		
12:20	Race 3	TECHNOLOGY	All Drivers/Teams		
12:40	Race 3	SENIOR	All Drivers/Teams		
13:00	Lunch	Electric Vehicules Exhibition			
14:00	Race 4	RENTAL	All Drivers/Teams		
14:20	Race 4	TECHNOLOGY	All Drivers/Teams		
14:40	Race 4	SENIOR	All Drivers/Teams		
15:20	Final	RENTAL	All Drivers/Teams		
15:40	Final	TECHNOLOGY	All Drivers/Teams		
16:00	Final	SENIOR	All Drivers/Teams		
16:30	Podios	All Categories			
17:00		Electric Vehicules Exhibition			

Comisarios Técnicos

ACUERDOS - CONCLUSIONES

• LOS PONENTES MUESTRAN SU PROYECTO DE UN KART DE PROPULSIÓN ELÉCTRICA, ROMPIENDO ALGUNOS PREJUICIOS Y ESTEREOTIPOS ASOCIADOS A LOS VEHÍCULOS ELÉCTRICOS DE COMPETICIÓN.

 CON DIVERSOS TEST EN PISTA, Y CON LA RECOPILACIÓN DE DATOS DE VARIOS PILOTOS INTERNACIONALES DE KARTING, SE REFUERZA LA IDEA DE ESTE PROYECTO, DEMOSTRANDO QUE UN VEHÍCULO ELÉCTRICO ES COMPARABLE A OTRO VEHÍCULO DE COMBUSTIÓN INTERNA A NIVEL DE SEGURIDAD, PRESTACIONES E INVERSIÓN ECONÓMICA.

MUCHAS GRACIAS

